Chiang, Ming-Hsi

Bioinorganic Chemistry and Catalysis

Chiang, Ming-Hsi (江明錫)

    886-2-27898568
    886-2-27831237
    mhchiang
Associate Research Fellow (2005-);B.S., National Changhua University of Education (1993);Ph.D., Indiana University at Bloomington, U.S.A. (2001);Postdoctoral Scientist, U.S. DOE Argonne National Laboratory (2001-2004);Postdoctoral Fellow, National Tsing Hua University (2004-2005) ;
Research Interests

The hydrogenase metalloenzyme and the artificial bio-inspired catalysts for hydrogen production

 Discovering a new type of green energy resource of low cost is of contemporary importance to ease rapid growth of global demand for fossil fuels that produces excessive amount of CO2 and causes tremendous climate changes. Molecular hydrogen is considered as the next generation clean fuel, since its stored chemical energy releases with formation of water. In biological systems, hydrogenases are used to catalyze H2. Understanding the catalytic mechanism thus facilitates chemists to design artificial biomimitic catalysts to hydrogen production.

 The research in Dr. Chiang’s group is focused on the rational synthesis of novel transition metal catalysts for efficient hydrogen production. Design of the catalyst is inspired by the active site of [FeFe] hydrogenase in virtue of its superior ability for hydrogen production. The active site consists of a {Fe2S2} core attached by a [4Fe4S] cluster. Two major issues essential to catalysis of the active site of [FeFe] hydrogenase are addressed: the substrate accessible site and the attached [4Fe4S] unit.

 Molecular manipulation techniques are deployed to construct structural models with variations to simulate structural confinement by the protein pocket. The products under reducing and acidic conditions are isolated for the purpose of mechanistic elucidation. Aside from the influence of the peptide chains in the vicinity of the active site, the rotated geometry of the distal Fe center within the active site is also induced by changes of electronic structures of the Fe2 core. The [4Fe4S] unit within the H cluster plays a key role on the electronic changes. Several Fe-S model complexes with redox-active units are characterized to gain insights of the electronic influence by the presence of the redox-active fragments.

Mimicking the active site of [FeFe] hydrogenase

The influeneces of the primary (a) and secondary (b) ligand fields

Electronic influence of the redox partners

The dioxygenase metalloenzyme and the artificial bio-inspired catalysts for oxidation of aromatic carbons

 The catabolism of catechol species including halogenated derivatives in bacterial degradative pathways is achieved by ring-cleaving dioxygenases. The specific metalloenzymes utilize molecular oxygen to generate the aliphatic products, which allows recycling of the carbons sequestered in aromatic organics. Two categories for oxygen insertion to the aromatic carbons are classified on the basis of the position of the C-C bond: the intradiol and extradiol cleavage. The former type breaks the 1,2-carbon-carbon bond, resulting in cis,cis-muconic acids. The latter cleavages the 2,3-carbon-carbon bond to produce muconic semialdehydes. The Fe ion is contained in the active site of both types of dioxygenases. For the extradiol dioxygenase, Mn2+ (Mn-MndD, Arthrobacter globiformis) is also identified. Here, Dr. Chiang’s group is interested in activation of molecular oxygen via dioxygenases to generate oxidation products of the aromatic compounds. The research focus is on the mechanistic study to obtain advanced knowledge related to how bacteria utilize aromatic carbons in term of energy and decontamination of halogenated molecules.

(a) Ring cleavage by catechol dioxygenase (b) Proposed catalytic cycle of homoprotocatechuate 2,3-dioxygenase

Synthesis and characterization of the peroxomanganese(IV) complex

Nano-sized porous catalysts

 In search of potential applications of artificial catalysts for pilot runs, Dr. Chiang is developing nano-sized porous catalysts. Nanomaterials are of several advantages: They can serve as a support to catalytically active transition metals. Catalytic selectivity and efficiency are tunable by pore orifices and effective surface areas. Dr. Chiang has teamed up with several research groups to synthesize metal-organic coordination polymers from a variety of transition metal ions and organic ligands based on a combinatorial strategy. Of particular interest is the fact that when catalytic metal sites are immobilized on the backbones of three-dimensional structures, magnetic behaviors are observed due to interactions among the paramagnetic metal centers. The magnetic property in turn may influence the catalysis. Such networks furnished with paramagnetic ions are attractive in terms of potential magneto applications.

Nano-porous structures



Selected Publications
  1. Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. Angew. Chem. Int. Ed. 2015, DOI: 10.1002/anie.201506736.
  2. Chu, K.-T.; Liu, Y.-C.; Huang, Y.-L.; Hsu, C.-H.; Lee, G.-H.; Chiang, M.-H. A Reversible Proton Relay Process Mediated by H-bonding Interaction in [FeFe]hydrogenase Modeling, Chem. Eur. J. 2015, 21, 10978. (featured as a cover paper)
  3. Dhayal, R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W. [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in a Molecular Nanocluster by Neutron Diffraction. Chem. Eur. J. 2015, 21, 8369.
  4. Chu, K.-T.; Liu, Y.-C.; Huang, Y.-L.; Lee, G.-H.; Tseng, M.-C.; Chiang, M.-H. Redox Communication within Multinuclear Iron-Sulfur Complexes Related to Electronic Interplay in the Active Site of [FeFe]Hydrogenase. Chem. Eur. J. 2015, 21, 6852.
  5. Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. [Ag21{S2P(OiPr)2}12]+: An Eight-Electron Superatom. Angew. Chem. Int. Ed. 2015, 54, 3702.
  6. Tseng, T.-W.; Luo, T.-T.; Shih, Y.-R.; Shen, J.-W.; Lee, L.-W.; Chiang, M.-H.; Lu, K.-L. Self-Triggered Conformations of Disulfide Ensembles in Coordination Polymers With Multiple Metal Clusters. CrystEngComm 2015, 17, 2847.
  7. Tsou, C.-C.; Chiu, W.-C.; Ke, C.-H.; Tsai, J.-C.; Wang, Y.-M.; Chiang, M.-H.; Liaw, W.-F. Iron(III) Bound by Hydrosulfide Anion Ligands: NO-Promoted Stabilization of the [FeIII–SH] Motif. J. Am. Chem. Soc. 2014, 136, 9424.
  8. Wu, J.-Y.; Hsiao, C.-C.; Chiang, M.-H. Concomitant Crystallization of Genuine Supramolecular Isomeric Rhombus Grid and Ribbon. Cryst. Growth & Des. 201414, 4321.
  9. Capangpangan, R. Y.; dela Rosa, M. A. C.; Chang, C. H.; Wang, W. C.; Peng, J.; Shih, S. J.; Chiang, M.-H.; Tzou, D. L.; Lin, C. C.; Chen, Y. J. Selective enrichment and sensitive detection of candidate disease biomarker using a novel surfactant-coated magnetic nanoparticles. IOP Conf. Series: Materials Science and Engineering 2014, 64, 012022.
  10. Edwards, A. J.; Dhayal, R. S.; Liao, P.-K.; Liao, J.-H.; Chiang, M.-H.; Piltz, R. O.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Chinese Puzzle Molecule: A Fifteen Hydride, 28 Copper Nanoball. Angew. Chem. Int. Ed. 2014, 53, 7214.
  11. Liu, Y.-C.; Chiang, M.-H.; Huang, Y.-L. Redox Non-innocent Ligands in Catalysis. Chemistry (The Chinese Chemical Society, Taipei) 2014, 72, 67.
  12. Liu, Y.-C.; Chu, K.-T.; Jhang, R.-L.; Lee, G.-H.; Chiang, M.-H. [FeFe] Hydrogenase Active Site Modeling: a Key Intermediate Bearing a Thiolate Proton and Fe Hydride. Chem. Commun. 2013, 49, 4743. (featured as a cover paper)
  13. Yen, T.-H.; Chu, K.-T.; Chiu, W.-W.; Chien, Y.-C.; Lee, G.-H.; Chiang, M.-H. Synthesis and characterization of the diiron biomimics bearing phosphine borane for hydrogen formation. Polyhedron 2013, 64, 247. (Invited contribution to a special issue)
  14. Tsai,F.-T; Lee,Y.-C.; Chiang, M.-H.; Liaw, W.-F. Nitrate-to-Nitrite-to-Nitric Oxide Conversion Modulated by Nitrate-Containing {Fe(NO)2}9 Dinitrosyl Iron Complex (DNIC). Inorg. Chem. 2013, 52, 464.
  15. Liu, Y.-C.; Chiang, M.-H. Photocatalytic Hydrogen Production Based on [FeFe]-Hydrogenase Mimics. Chemistry (The Chinese Chemical Society, Taipei) 2013, 71, 299.
  16. Tsai, M.-J.; Wu, J.-Y.; Chiang, M.-H.; Huang, C.-H.; Kuo, M.-Y.; Lai, L.-L. Infinite Copper(II) Coordination Architectures from a Resonative Aminotriazine-Derived Tripodal Ligand: Synthesis, Structures, and Magnetic Properties. Inorg. Chem. 2012, 51, 12360.
  17. Liu, Y.-C.; Yen, T.-H.; Tseng, Y.-J.; Hu, C.-H.; Lee, G.-H.; Chiang, M.-H. Electron Delocalization from the Fullerene Attachment to the Diiron Core within the Active-Site Mimics of [FeFe]Hydrogenase. Inorg. Chem. 2012, 51, 5997.
  18. Lee, C.-M.; Chuo, C.-H.; Chen, C.-H.; Hu, C.-C.; Chiang, M-.H.; Tseng, Y.-J.; Hu, C.-H.; Lee, G.-H. Structural and Spectroscopic Characterization of a Monomeric Side-On Manganese(IV) Peroxo Complex. Angew. Chem. Int. Ed. 2012, 51, 5427.
  19. Shih,W.-C.; Lu, T.-T.; Yang, L.-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang, Y.-W.; Liaw, W.-F. New Members of a Class of Dinitrosyliron Complexes (DNICs): The Characteristic EPR Signal of the Six-Coordinate and Five-coordinate {Fe(NO)2}9 DNICs. J. Inorg. Biochem. 2012, 113, 83.
  20. Lin, S.-H.; Yang, C.-I.; Kuo, T.-S.; Chiang, M.-H.; Hsu, C,-C.; Lu, K.-L. Self-adaptation of manganese-chloride arrangement toward high spin Mn5(m-Cl)4 cluster-based metal-organic framework with S = 15/2. Dalton Trans. 2012, 41, 1448.
  21. Wu, Y.-J.; Zhong, M.-S.; Chiang, M.-H.; Tsai, M.-R.; Lai, L.-L. Synthesis, Characterization and Solvent-mediated Structural Transformation of a Discrete Tetragonal Metalloprism. Dalton Trans. 2012, 41, 156.
  22. Lin, P.-C.; Chen, H.-Y.; Chen, P.-Y.; Chiang, M.-H.; Chiang, M. Y.; Kuo, T.-S.; Hsu, S. C. N. Self-Assembly and Redox Modulation of the Cavity Size of an Unusual Rectangular Iron Thiolate Aryldiisocyanide Metallocyclophane. Inorg. Chem. 2011, 50, 10825.
  23. Liu, Y.-C.; Yen, T.-H.; Chiang, M.-H. Hydrogen Activation and Biological Inorganic Mimics of Hydrogenases. Chemistry (the Chinese Chemical Society, Taipei) 2011, 69, 1.
  24. Liu, Y.-C.; Tu, L.-K.; Yen, T.-H.; Lee, G.-H.; Chiang, M.-H. Influences on the Rotated Structure of the Diiron Dithiolate Complexes: Electronic Asymmetry vs. Secondary Coordination Sphere Interaction. Dalton Trans. 2011, 40, 2528.
  25. Liu, Y.-C.; Yen, T.-H.; Tu, L.-K.; Chiang, M.-H. Design of Biomimetic Models Related to the Active Sites of Fe-Only Hydrogenase”, in Biomimetic Based Applications, ed. Anne George, InTech Publishing, Austria, ISBN 978-953-307-195-4, p123-140, 2011.
  26. (Invited contribution to a special issue) Liu, Y.-C.; Lee, C.-H.; Lee, G.-H.; Chiang, M.-H. Influence of the Attached Redox-Active Phosphine on Oxidations of the Diiron Core Related to the Active Site of Fe-Only Hydrogenase. Eur. J. Inorg. Chem. 2011, 1155.
  27. Liu, Y.-C.; Tu, L.-K.; Yen, T.-H.; Lee, G.-H.; Yang, S.-T.; Chiang, M.-H. Secondary Coordination Sphere Interactions within the Biomimetic Iron Azadithiolate Complexes Related to Fe-Only Hydrogenase: Dynamic Measure of Electron Density about the Fe Sites. Inorg. Chem. 2010, 49, 6409.
  28. Wu, J.-Y.; Huang, S.-M.; Chiang, M.-H. Hydro(solvo)thermal synthesis of homochiral metal–camphorate coordination polymers. CrystEngComm 2010, 12, 3909.
  29. Chiang, M.-H.; Liu, Y.-C.; Yang, S.-T.; Lee, G.-H. Biomimetic Model Featuring the NH Proton and Bridging Hydride Related to a Proposed Intermediate in Enzymatic H2 Production by Fe-Only Hydrogenase. Inorg. Chem. 2009, 48, 7604.
  30. Antonio, M. R.; Chiang, M.-H.; Seifert, S.; Tiede, D. M.; Thiyagarajen, P. In Situ Measurement of the Preyssler Polyoxometalate Morphology upon Electrochemical Reduction: A Redox System with Born Electrostatic Ion Solvation Behavior. J. Electroanal. Chem. 2009, 626, 103.

Update: 2016-01-06

Journal Paper
  1. Min-Wen Chung, Yu-Chiao Liu, Tao-Hung Yen, Ming-Hsi Chiang* Bilayer Vesicles as a Noncovalent Immobilization Platform of Electrocatalysts for Energy Conversion in Neutral Aqueous Media. CHEMELECTROCHEM 2017-11,.
  2. Jing-Yun Wu*, Ming-Shiou Zhong, Ming-Hsi Chiang* Anion-Directed Metallocages: A Study on the Tendency of Anion Templation. CHEMISTRY-A EUROPEAN JOURNAL 2017-10,.
  3. Chien-Ming Lee*, Wun-Yan Wu, Ming-Hsi Chiang*, D. Scott Bohle*, and Gene-Hsiang Lee Generation of a Mn(IV)–Peroxo or Mn(III)–Oxo–Mn(III) Species upon Oxygenation of Mono- and Binuclear Thiolate-Ligated Mn(II) Complexes. INORGANIC CHEMISTRY 2017-0956, 10559-10569.
  4. Wan-Ting Chang, Po-Yi Lee, Jian-Hong Liao, Kiran Kumarvarma Chakrahari, Samia Kahlal, Yu-Chiao Liu, Ming-Hsi Chiang, Jean-Yves Saillard*, C. W. Liu* Eight-Electron Silver and Mixed Gold/Silver Nanoclusters Stabilized by Selenium Donor Ligands. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 2017-0856, 10178-10182.
  5. Chang, Hsuan-Hao; Chu, Kai-Ti; Chiang, Ming-Hsi; Han, Jeng-Liang* Organocatalytic enantioselective Michael reaction of 1,3-dicarbonyls with α-substituted β-nitroacrylates. TETRAHEDRON 201773, 727-734.
  6. Yen, Tao-Hung; He, Zong-Cheng; Lee, Gene-Hsiang; Tseng, Mei-Chun; Shen, Yu-Hsuan; Tseng, Tien-Wen*; Liaw, Wen-Feng*; Chiang, Ming-Hsi* Reduced thione ligation is preferred over neutral phosphine ligation in diiron biomimics regarding electronic functionality: a spectroscopic and computational investigation. CHEMICAL COMMUNICATIONS 201753, 332-335.
  7. Tseng, T.-W.*; Luo, T.-T.; Wu, J.-Y.; Tsai, C.-C.; Huang, C.-Y.; Chiang, M.-H.*; Lu, K.-L.* Adaptation of Guest Molecules: A Simple System that Amplifies the Gentle Perturbation of Host Lattices from Nickel(II) to Cobalt(II). INORGANICA CHIMICA ACTA 2016445, 96-102.
  8. Wu, J.-Y.*; Zhong, M.-S.; Chiang, M.-H.*; Bhattacharya, D.*; Lee, Y.-W.; Lai, L.-L. Anion-Directed Metallocages, Coordination Chain, and Complex Double Salt of Copper(II) Metallo-assemblies: Structures, Magnetic Properties, EPR and Density Functional Study. CHEMISTRY-A EUROPEAN JOURNAL 201622, 7238-7247.
  9. Tsou, L.-H.; Sigrist, M.; Chiang, M.-H.; Horng, E.-C.; Chen, C.-H.; Huang, S.-L.; Lee, G.-H.; Peng, S.-M.* Asymmetric Tetranuclear Nickel Chains with Unidirectionally Ordered 2-(α-(5-phenyl)pyridylamino)-1,8-naphthyridine ligands. DALTON TRANSACTIONS 201645, 17281-17289.
  10. Liu, Y.-C.; Chu, K.-T.; Huang, Y.-L.; Hsu, C.-H.; Lee, G.-H.; Tseng, M.-C.; Chiang, M.-H.* Protonation/Reduction of Carbonyl-Rich Diiron Complexes and the Direct Observation of Triprotonated Species: Insights into the Electrocatalytic Mechanism of Hydrogen Formation. ACS Catalysis 20166, 2559-2576.
  11. Wu, J.-Y.*; Cheng, F.-Y.; Chiang, M.-H.* Synthesis, Crystal Structure, and Magnetic Properties of a Two-Fold Interpenetrated Diamondoid Open Framework. JOURNAL OF SOLID STATE CHEMISTRY 2016242, 8-13.
  12. Liu, Y.-C.; Yen, T.-H.; Chu, K.-T.; Chiang, M.-H.* Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production. COMMENTS ON INORGANIC CHEMISTRY 201636, 141-181.
  13. Dhayal, R. S.; Lin, Y.-R.; Liao, J.-H.; Chen, Y.-J.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.*; Liu; C. W.* [Ag20{S2P(OR)2}12]: A Superatom Complex with a Chiral Metallic Core and High Potential for Isomerism. CHEMISTRY-A EUROPEAN JOURNAL 201622, 9943-9947.
  14. Chakrahari, Kiran Kumarvarma; Liao, Jian-Hong; Kahlal, Samia; Liu, Yu-Chiao; Chiang, Ming-Hsi*; Saillard, Jean-Yves*; Liu, C. W.* [Cu13{S2CNnBu2}6(acetylide)4]+: A Two-Electron Superatom. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 201655, 14704-14708.
  15. Chu, K.-T.; Liu, Y.-C.; Huang, Y.-L.; Hsu, C.-H.; Lee, G.-H.; Chiang, M.-H.* (featured as a cover paper) A Reversible Proton Relay Process Mediated by H-bonding Interaction in [FeFe]hydrogenase Modeling. CHEMISTRY-A EUROPEAN JOURNAL 201521, 10978-10982.
  16. Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W.* Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 201554, 13604-13608.
  17. Capangpangan, R. Y.; dela Rosa, M. A. C.; Obena, R. P.; Chou, Y.-J.; Tzou, D.-L.; Shih, S.-J.; Chiang, M.-H.; Lin, C.-C.; Chen, Y.-J.* Monodispersity of Magnetic Immuno-Nanoprobes Enhances the Detection Sensitivity of Low Abundance Biomarkers in One Drop of Serum. ANALYST 2015140, 7678-7686.
  18. Chu, K.-T.; Liu, Y.-C.; Huang, Y.-L.; Lee, G.-H.; Tseng, M.-C.; Chiang, M.-H.* Redox Communication within Multinuclear Iron-Sulfur Complexes Related to Electronic Interplay in the Active Site of [FeFe]Hydrogenase. CHEMISTRY-A EUROPEAN JOURNAL 201521, 6852-6861.
  19. Tseng, T.-W.*; Luo, T.-T.; Shih, Y.-R.; Shen, J.-W.; Lee, L.-W.; Chiang, M.-H.*; Lu, K.-L.* Self-triggered conformations of disulfide ensembles in coordination polymers with multiple metal clusters. CrystEngComm 201517, 2847-2856.
  20. Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W.* [Ag21{S2P(OiPr)2}12]+: An Eight-Electron Superatom. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 201554, 3702-3706.
  21. Dhayal, R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W.* [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in a Molecular Nanocluster by Neutron Diffraction. CHEMISTRY-A EUROPEAN JOURNAL 201521, 8369-8374.
  22. Edwards, A. J.; Dhayal, R. S.; Liao, P.-K.; Liao, J.-H.; Chiang, M.-H.; Piltz, R. O.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. (featured as a cover paper) Chinese Puzzle Molecule: A Fifteen Hydride, 28 Copper Nanoball. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 201453, 7214-7218.
  23. Wu, J.-Y.; Hsiao, C.-C.; Chiang, M.-H. Concomitant Crystallization of Genuine Supramolecular Isomeric Rhombus Grid and Ribbon. CRYSTAL GROWTH & DESIGN 201414, 4321-4328.
  24. Tsou, C.-C.; Chiu, W.-C.; Ke, C.-H.; Tsai, J.-C.; Wang, Y.-M.; Chiang, M.-H.; Liaw, W.-F. Iron(III) Bound by Hydrosulfide Anion Ligands: NO-Promoted Stabilization of the [FeIII–SH] Motif. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2014136, 9424-9433.
  25. Liu, Y.-C.; Chiang, M.-H.; Huang, Y.-L. Redox Non-innocent Ligands in Catalysis. Chemistry (The Chinese Chemical Society, Taipei) 201472, 67-76.
  26. Capangpangan, R. Y.; dela Rosa, M. A. C.; Chang, C. H.; Wang, W. C.; Peng, J.; Shih, S. J.; Chiang, M.-H.; Tzou, D. L.; Lin, C. C.; Chen, Y. J.* Selective enrichment and sensitive detection of candidate disease biomarker using a novel surfactant-coated magnetic nanoparticles. IOP Conf. Series: Materials Science and Engineering 201464, 012022-1-012022-7.
  27. Yen, T.-H.; Chu, K.-T.; Chiu, W.-W.; Chien, Y.-C.; Lee, G.-H.; Chiang, M.-H. (Invited contribution to a special issue) Synthesis and characterization of the diiron biomimics bearing phosphine borane for hydrogen formation. POLYHEDRON 201364, 247-254.
  28. Fu-Te Tsai,* Yu-Ching Lee, Ming-Hsi Chiang, Wen-Feng Liaw* Nitrate-to-Nitrite-to-Nitric Oxide Conversion Modulated by Nitrate-Containing {Fe(NO)2}9 Dinitrosyl Iron Complex (DNIC). INORGANIC CHEMISTRY 201352, 464-473.
  29. Liu, Y.-C.; Chiang, M.-H.* Photocatalytic Hydrogen Production Based on [FeFe]-Hydrogenase Mimics. Chemistry (The Chinese Chemical Society, Taipei) 201371, 299-309.
  30. Liu, Y.-C.; Chu, K.-T.; Jhang, R.-L.; Lee, G.-H.; Chiang, M.-H.* [FeFe] Hydrogenase Active Site Modeling: a Key Intermediate Bearing a Thiolate Proton and Fe Hydride. CHEMICAL COMMUNICATIONS 201349, 4743-4749.
  31. Yu-Chiao Liu, Tao-Hung Yen, Yu-Jan Tseng, Ching-Han Hu, Gene-Hsiang Lee, Ming-Hsi Chiang* Electron Delocalization from the Fullerene Attachment to the Diiron Core within the Active-Site Mimics of [FeFe]Hydrogenase. INORGANIC CHEMISTRY 201251, 5997-5999.
  32. Meng-Jung Tsai, Jing-Yun Wu*, Ming-Hsi Chiang*, Cheng-Hao Huang, Ming-Yu Kuo, Long-Li Lai* Infinite Copper(II) Coordination Architectures from a Resonative Aminotriazine-Derived Tripodal Ligand: Synthesis, Structures, and Magnetic Properties. INORGANIC CHEMISTRY 201251, 12360-12371.
  33. Wei-Chih Shih, Tsai-Te Lu, Li-Bo Yang, Fu-Te Tsai, Ming-Hsi Chiang*, Jyh-Fu Lee, Yun-Wei Chiang, Wen-Feng Liaw* New Members of a Class of Dinitrosyliron Complexes (DNICs): The Characteristic EPR Signal of the Six-Coordinate and Five-Coordinate {Fe(NO)2}9 DNICs. JOURNAL OF INORGANIC BIOCHEMISTRY 2012113, 83-93.
  34. Shao-Hsuan Lin, Chen-I Yang, Ting-Shen Kuo, Ming-Hsi Chiang, Kung-Chung Hsu, Kuang-Lieh Lu* Self-Adaptation of Manganese Chloride Arrangement toward High Spin Mn5(u-Cl)4 Cluster-Based Metal Organic Framework with S = 15/2. DALTON TRANSACTIONS 201241, 1448-1450.
  35. Chien-Ming Lee*, Chi-He Chuo, Ching-Hui Chen, Cho-Chun Hu, Ming-Hsi Chiang*, Yu-Jan Tseng, Ching-Han Hu, Gene-Hsiang Lee Structural and Spectroscopic Characterization of a Monomeric Side-On Manganese(IV) Peroxo Complex. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 201251, 5427-5430.
  36. Jing-Yun Wu*, Ming-Shiou Zhong, Ming-Hsi Chiang, Meng-Rong Tsai, Long-Li Lai Synthesis, Characterization and Solvent-Mediated Structural Transformation of a Discrete Tetragonal Metalloprism. DALTON TRANSACTIONS 201241, 156-164.
  37. Yu-Chiao Liu, Chia-Hsin Lee, Gene-Hsiang Lee, Ming-Hsi Chiang* (Invited contribution to a special issue) Influence of the Attached Redox-Active Phosphine on Oxidations of the Diiron Core Related to the Active Site of Fe-Only Hydrogenase. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY 20112011, 1151-1162.
  38. Yu-Chiao Liu, Tao-Hung Yen, Ming-Hsi Chiang* Hydrogen Activation and Biological Inorganic Mimics of Hydrogenases. Chemistry (the Chinese Chemical Society, Taipei) 201169, 87-105.
  39. Yu-Chiao Liu, Ling-Kuang Tu, Tao-Hung Yen, Gene-Hsiang Lee, Ming-Hsi Chiang* Influences on the Rotated Structure of the Diiron Dithiolate Complexes: Electronic Asymmetry vs. Secondary Coordination Sphere Interaction. DALTON TRANSACTIONS 201140, 2528-2541.
  40. Pei-Chin Lin, Hsing-Yin Chen, Po-Yu Chen, Ming-Hsi Chiang, Michael Y. Chiang, Ting-Shen Kuo, Sodio C. N. Hsu* Self-Assembly and Redox Modulation of the Cavity Size of an Unusual Rectangular Iron Thiolate Aryldiisocyanide Metallocyclophane. INORGANIC CHEMISTRY 201150, 10825-10834.
  41. Jing-Yun Wu*, Sheng-Ming Huang, Ming-Hsi Chiang Hydro(solvo)thermal Synthesis of Homochiral Metal–Camphorate Coordination. CrystEngComm 201012, 3909-3913.
  42. Yu-Chiao Liu, Ling-Kuang Tu, Tao-Hung Yen, Gene-Hsiang Lee, Shu-Ting Yang, Ming-Hsi Chiang* Secondary Coordination Sphere Interactions within the Biomimetic Iron Azadithiolate Complexes Related to Fe-Only Hydrogenase: Dynamic Measure of Electron Density about the Fe Sites. INORGANIC CHEMISTRY 201049, 6409-6420.
  43. Ming-Hsi Chiang*, Yu-Chiao Liu, Shu-Ting Yang, Gene-Hsiang Lee Biomimetic Model Featuring the NH Proton and Bridging Hydride Related to a Proposed Intermediate in Enzymatic H2 Production by Fe-Only Hydrogenase. INORGANIC CHEMISTRY 200948, 7604-7612.
  44. Mark R. Antonio, Ming-Hsi Chiang, Soenke Seifert, David M. Tiede, Pappannan Thiyagarajan In Situ Measurement of the Preyssler Polyoxometalate Morphology upon Electrochemical Reduction: a Redox System with Born Electrostatic Ion Solvation Behavior. JOURNAL OF ELECTROANALYTICAL CHEMISTRY 2009626, 103-110.
  45. Mark R. Antonio, Ming-Hsi Chiang Stabilization of Plutonium(III) in the Preyssler Polyoxometalate. INORGANIC CHEMISTRY 200847, 8278-8285.
  46. Tai-Nan Chen, Feng-Chun Lo, Ming-Li Tsai, Ko-Nien Shih, Ming-Hsi Chiang, Gene-Hsiang Lee, Wen-Feng Liaw* Dinitrosyl Iron Complexes [E5Fe(NO)2]- (E = S, Se): A Precursor of Roussin's Black Salt [Fe4E3(NO)7]. INORGANICA CHIMICA ACTA 2006359, 2525-2533.
  47. Fu-Te Tsai, Show-Jen Chiou, Ming-Che Tsai, Ming-Li Tsai, Hsiao-Wen Huang, Ming-Hsi Chiang, Wen-Feng Liaw* Dinitrosyl Iron Complexes (DNICs) [L2Fe(NO)2]- (L = Thiolate): Interconversion among {Fe(NO)2}9 DNICs, {Fe(NO)2}10 DNICs, and [2Fe-2S] Clusters, and the Critical Role of the Thiolate Ligands in Regulating NO Release of DNICs. INORGANIC CHEMISTRY 200544, 5872-5881.
  48. Drew Gorman-Lewis, Jeremy B. Fein*, Lynne Soderholm, Mark P. Jensen, Ming-Hsi Chiang Experimental Study of Neptunyl Adsorption onto Bacillus Subtilis. GEOCHIMICA ET COSMOCHIMICA ACTA 200569, 4837-4844.
  49. Hao-Wen Chen, Chin-Wei Lin, Chiao-Chun Chen, Li-Bo Yang, Ming-Hsi Chiang, Wen-Feng Liaw* Homodinuclear Iron Thiolate Nitrosyl Compounds [(ON)Fe(S,S-C6H4)2Fe(NO)2]- and [(ON)Fe(SO2,S-C6H4)(S,S-C6H4)Fe(NO)2]- with {Fe(NO)}7-{Fe(NO)2}9 Electronic Coupling: New Members of a Class of Dinitrosyl Iron Complexes. INORGANIC CHEMISTRY 200544, 3226-3232.
  50. Ming-Hsi Chiang, Mark R. Antonio*, Clayton W. Williams, Lynne Soderholm A Unique Coordination Environment for an Ion: EXAFS Studies and Bond Valence Model Approach of the Encapsulated Cation in the Preyssler Anion. DALTON TRANSACTIONS 20042004, 801-806.
  51. Ming-Hsi Chiang, Mark R. Antonio*, Lynne Soderholm Energetics of the Preyssler Anion’s Molecular Orbitals: Quantifying the Effect of the Encapsulated-Cation’s Charge. DALTON TRANSACTIONS 20042004, 3562-3567.
  52. Mark R. Antonio*, Ming-Hsi Chiang, Clayton W. Williams, Lynne Soderholm In Situ Actinide X-ray Absorption Spectroelectrochemistry. MRS Proc. 2004802, 157-168.
  53. Ming-Hsi Chiang, Juile A. Dzielawa, Mark L. Dietz, Mark R. Antonio* Redox Chemistry of the Keggin Heteropolyoxotungstate Anion in Ionic Liquids. JOURNAL OF ELECTROANALYTICAL CHEMISTRY 2004567, 77-84.
  54. Skantha Skanthakumar, Drew Gorman-Lewis, Andrew J. Locock, Ming-Hsi Chiang, Mark P. Jensen, Peter C. Burns, Jeremey Fein, Charles D. Jonah, Klaus Attenkofer, Lynne Soderholm Changing Np Redox Speciation in the Synchrotron Beam. MRS Proc. 2003802, 151-156.
  55. Ming-Hsi Chiang, Clayton W. Williams, Lynne Soderholm, Mark R. Antonio* Coordination of Actinide Ions in Wells-Dawson Heteropolyoxoanion Complexes. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY 20032003, 2663-2669.
  56. Ming-Hsi Chiang, Lynne Soderholm, Mark R. Antonio Redox Chemistry of Actinide Ions in Wells-Dawson Heteropolyoxoanion Complexes. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY 20032003, 2929-2936.
Chapter of Publication
  1. Yu-Chiao Liu, Tao-Hung Yen, Ling-Kuang Tu, Ming-Hsi Chiang*, 2011, “Design of Biomimetic Models Related to the Active Sites of Fe-Only Hydrogenase”, editor(s): Anne George, Biomimetic Based Applications, pp. 123-140, Austria: InTech Publishing.
Paper of Conference (or Symposium)
  1. Ming-Hsi Chiang, 2016, “A Concerted Proton-Electron Transfer-Involved Catalysis by Fe-S Electrocatalysts for Hydrogen Evolution”, paper presented at 8th Asian Biological Inorganic Chemistry Conference, Auckland, New Zealand: IBICS, 2016-12-04 ~ 2016-12-09.
  2. Ming-Hsi Chiang, 2016, “Diiron Electrocatalyst for Hydrogen Production”, paper presented at 3rd International Conference on Organometallics and Catalysis, Seoul, Korea: Seoul National University, 2016-08-28 ~ 2016-08-30.
  3. Yu-Chiao Liu, Kai-Ti Chu, Ming-Hsi Chiang*, 2015, “A High-Performance Diiron Electrocatalyst for Hydrogen Production”, paper presented at 17th International Conference on Biological Inorganic Chemistry, Beijing, China: IBICS, 2015-07-20 ~ 2015-07-24.
  4. Ming-Hsi Chiang, 2015, “A High-Performance Diiron Electrocatalyst for Hydrogen Production”, paper presented at 6th North America-Greece-Cyprus Workshop on Paramagnetic Materials, Athens, Greece: University of Florida, 2015-06-03 ~ 2015-06-05.
  5. Yu-Chiao Liu, Kai-Ti Chu, Gene-Hsiang Lee, and Ming-Hsi Chiang, 2014, “A High-Performance Diiron Electrocatalyst for Hydrogen Production”, paper presented at The 8th Taiwan-Japan Bilateral Symposium on Architecture of Functional Organic Molecules, Fukuoka, Japan: Kyushu University, 2014-11-27 ~ 2014-11-29.
  6. Kai-Ti Chu, Yu-Chiao Liu, Ruei-Lin Jhang, Gene-Hsiang Lee, Ming-Hsi Chiang, 2013, “[FeFe] hydrogenase Active Site Modeling: a Key Intermediate Bearing a Thiolate Proton and Fe Hydride”, paper presented at The ISACS12: Challenges in Chemical Renewable Energy, Cambridge, UK: RSC, 2013-09-03 ~ 2013-09-06.
  7. Ming-Hsi Chiang, 2013, “Tuning Electronic Structure of the Fe Core Within FeS Biomimics for Efficient Hydrogen Production”, paper presented at The International Symposium on Bioinorganic Chemistry, Korea, Seoul: Society of Korean Bioinorganic Chemistry, 2013-06-12 ~ 2013-06-15.
  8. Ming-Hsi Chiang, 2013, “Modulation of the Electronic Structure of the Fe2 Core Related to [FeFe] Hydrogenases for Efficient Hydrogen Production”, paper presented at The 5th NAGC WORKSHOP on Paramagnetic Materials, Limassol, Cyprus: University of Florida, 2013-05-22 ~ 2013-05-26.
  9. Yu-Chiao Liu, Tao-Hung Yen, Ming-Hsi Chiang, 2012, “Electron Delocalization from the Fullerene Attachment to the Diiron Core”, paper presented at The 6th Asian Biological Inorganic Chemistry Conference, Hong Kong: SBIC, 2012-11-05 ~ 2012-11-08.
  10. Ming-Hsi Chiang, 2012, “Electron Delocalization from the Fullerene Attachment to the Diiron Core”, paper presented at The Tateshina Conference, Nagano, Japan: The University of Tokyo, 2012-11-09 ~ 2012-11-11.
  11. Kai-Ti Chu, Yu-Chiao Liu, Chia-Hsin Lee, Gene-Hsiang Lee, Ming-Hsi Chiang, 2012, “Influence of a Redox-Active Phosphane Ligand on the Oxidations of a Diiron Core Related to the Active Site of [FeFe] Hydrogenase”, paper presented at The 3rd International Symposium on Solar Cells and Solar Fuels, Dalian, China: Dalian University of Technology, 2012-09-07 ~ 2012-09-11.
  12. Tao-Hung Yen, Yu-Chiao Liu, Ling-Kuang Tu, Gene-Hsiang Lee, Ming-Hsi Chiang, 2011, “The Influences of Secondary Coordination Sphere Interaction on Electronic Asymmetry within the Biomimetic Iron Azadithiolate Complexes related to the Active Site of Fe-only Hydrogenase”, paper presented at The 15th International Conference of Biological Inorganic Chemistry, Vancouver, Canada: SBIC, 2011-08-07 ~ 2011-08-12.
  13. Yu-Chiao Liu, Ling-Kuang Tu, Tao-Hung Yen, Gene-Hsiang Lee and Ming-Hsi Chiang*, 2010, “Dynamic measure of electron density about the Fe sites within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase”, paper presented at The 5th Asian Biological Inorganic Conference, Kaohsiung, Taiwan: Taiwan biological inorganic society, 2010-11-01 ~ 2010-11-05.
  14. Yu-Chiao Liu, Ling-Kuang Tu, Tao-Hung Yen, Gene-Hsiang Lee and Ming-Hsi Chiang*, 2010, “Dynamic measure of electron density about the Fe sites within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase”, paper presented at 24th ICOMC 2010, Taipei, Taiwan: NTU, NTHU, TKU, NSC, 2010-07-18 ~ 2010-07-23.